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Abstract

Background

Peritumoral inflammation—a response mainly involving polimorphonuclear neutrophils—

has traditionally been thought protumoral in its effects. In recent years, however, a number

of studies have indicated that it may play an important antitumoral role. This discrepancy

has been difficult to explain.

Methods and findings

This work describes a tool for simulating tumor growth that obeys the universal model of

tumor growth dynamics, and shows through its use that low intensity peritumoral inflamma-

tion exerts a protumoral effect, while high intensity inflammation exerts a potent antitumoral

effect. Indeed, the simulation results obtained indicate that a sufficiently strong antitumoral

effect can reverse tumor growth, as has been suggested several times in the clinical

literature.

Conclusions

The present result indicate that an ‘immunological threshold’ must exist, marking the bound-

ary between states in which peritumoral inflammation is either harmful or beneficial. These

findings lend support to the idea that stimulating intense peritumoral inflammation could be

used as a treatment against solid tumors.
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Introduction

Mortality rates associated with cancer remain very high; by the end of the decade the disease

will still likely cause 10 million deaths per year [1]. Current research into immunological treat-

ments for cancer focuses on harnessing the adaptive immune response and the power of T

lymphocytes. The innate immune response appears to have been neglected, yet it provides the

body’s first line of defense against infections. With respect to tumors, however, the effects of

polimorphonuclear neutrophils (PMNs) appear contradictory. For example, in chronic peritu-

moral inflammation they appear to have protumoral effects [2], but if this inflammation is

acute (either natural or induced) their behavior appears to be antitumoral [3]. This has been

difficult to explain, and despite recent literature reviews insisting on the antitumoral potential

of these cells [3–5], peritumoral inflammation is still largely regarded as favoring tumor

growth in the clinical setting. The present paper shows how the contrasting behavior of PMNs

can be explained in terms of the recently established universal model of tumor growth dynam-

ics (UMTGD) [6, 7]. This states that tumor growth satisfies molecular beam epitaxy (MBE)

class dynamics [7]. Thus, 1) the growth of the tumor radius is linear in time (except at the very

beginning, during which time it is exponential), 2) proliferating cells are only found at the

tumor border, and 3) tumor growth is governed by the availability of space (produced by the

lytic action of tumor cells against the host tissue) at the tumor border into which new tumor

cells can migrate and settle [6, 7]. This model also suggests that if the space they seek is made

unavailable, tumor growth must stop. PMNs, which are naturally drawn to tumors and con-

gregate around them [7], are candidate competitors for this space—a candidacy made stronger

by the fact that they are unaffected by the lytic enzymes and other degrading products pro-

duced by tumor cells [8]. When PMNs arrive in sufficient quantity (acute inflammation) they

should successfully occupy this space and ‘package’ the tumor. The pressure of many layers of

PMNs on the cells first arriving can then keep all possible space filled, preventing any further

tumor growth. If they arrive in small numbers, however, no such packaging may occur.

Indeed, this may have a protumoral effect owing to their inherent tissue-degrading action

opening up further space into which the tumor can grow. This argument forms the basis of the

hypothesis of the present work, which, through the use of a new UMTGD-compliant simula-

tion tool, provides evidence of an immunological threshold, above which peritumoral inflam-

mation is sufficient to cause antitumoral effects, but below which protumoral effects are

induced.

Materials and methods

The approval of the ethical committee of the Hospital de la Santa Creu i Sant Pau was not nec-

essary for this project since no intervention was performed on any human subject, no biologi-

cal sample was stored and the anonymity of all donors was maintained. However, all voluntary

donors signed their informed consent. All samples were accessed anonymously by authors.

Any patient information was known by authors. The treating physyician was MD Juan Carlos

Souto at Sant Pau Hospital, Barcelona, Spain.

Construction of the simulation tool

A simplified off-lattice tool, written in C++ and using the open source bullet physics library

[9], was developed to simulate tumor growth.

Fig 1 shows how the tool determines the fate of tumor cells under different growth condi-

tions, starting from the founding cell in a tumor. Designed to be UMTDG-compliant, it con-

templates that all tumor cells must be in one of the following states: 1) Proliferative. A state in

which tumor cells can duplicate because space is available into which new cells can diffuse and
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settle. The time that elapses before cells undergo mitosis is normally distributed, which can be

described by the following expression N(μmit, σmit). The tool assumes new cells to have half the

radius of the parent cell, and to grow continuously over time at a constant rate until duplica-

tion size is reached once more. 2) Quiescent. A state in which tumor cells cannot duplicate

because of a lack of space into which to diffuse and settle—but in which duplication may occur

if the necessary space becomes available. 3) Necrotic. A state in which, after a given time in the

quiescent state, cells undergo necrosis. The tool allows the visualization of the proliferative,

quiescent and necrotic cells in green, red and black respectively. The tool also assumes cell-cell

chemoattraction to lie behind both the formation of a tumoral mass (with tumor cells prefer-

ring to adhere to one another rather than to other host cells [10]) and the arrival around it of

activated PMNs, attracted by the tumor’s production of proinflammatory cytokines [11]). This

chemoattraction can be described by the expression,

Fi;j ¼
CF

r2
;

where r is the distance between cells, and CF is a constant. This type of equation is routinely

used to describe gravitational and electromagnetic attraction. Adhering to the idea that

tumor growth dynamics are universal and belong to the MBE class, the tool contemplates

the existence of a strong correlation between microenvironmental space, pressure and cell

proliferation. For tumor growth to be stopped, all actively dividing cells (which occur only

at the tumor border) must be prevented from diffusing away from their starting positions.

Thus, all the space available to them must be occupied—but this occupation must be under-

taken by cells that are not affected by the lactic acid or metalloproteinases produced by

tumor cells, i.e., the elements by which tumors attack host tissue and make space available

[12]. Interestingly, PMNs are able to resist the actions of these agents [13]. Thus, it is con-

templated that a tumor cell’s duplication is inhibited if there are more than Ninh cells (either

PMNs or indeed neighboring tumor cells) at a distance of less than a specified value Rinh,

and that an inhibited tumor cell becomes necrotic if it remains undivided for longer than a

given period μnec.
Arrival of PMNs at the tumor border. The recruitment of PMNs to a tumor involves a

series of coordinated interactions between the endothelial cells of the blood vessels in the vicin-

ity of the tumor and the PMNs themselves [14]. The endothelial cells are activated by proin-

flammatory agents secreted by the tumor [15], and begin to express adhesion molecules and

catechins, causing PMNs to accumulate, begin the process of diapedesis, and finally move

Fig 1. Flow diagram showing how the simulation tool works. PMN: polimorphonuclear neutrophil.

https://doi.org/10.1371/journal.pone.0202823.g001
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towards the tumor. The simulation tool assumes that neutrophils arrive from a position of

effective infinity, from a random direction, and at varying but constant rates under different

conditions, and that this response begins at the time point “start_IR”. If a tumor was lodged in

a host’s organ, migration of PMNs to the tumor would occur by extravasation. Normal vascu-

lature away from the tumor can be considered uniformly distributed, and so arrival of PMNs

from random directions is a reasonable assumption. When no external agent is detected, PMN

density in the blood flow can be considered constant. Thus, the rate of extravasation can also

be considered constant, and this can be translated to the model as a constant rate of arrival of

PMNs. The innate immune response to external agents (bacteria, foreign bodies. . .) consists of

an increase of PMN density. Since this incremental behaviour is not widely understood, we

model this behaviour as a higher constant rate of arrival.

Activated PMNs survive for up to 12 h [16] and the tool contemplates a normal lifetime dis-

tribution for them as described by the expression N(μlife PMN, σlife PMN), where μ represents the

average lifetime of a PMN and σ its standard deviation. Dead neutrophils are deemed to be

reabsorbed by the host (at a constant rate) and therefore to disappear.

Phagocytosis. Once the contact time between PMNs and tumor cells unable to move into

new space is greater than a fixed limit tphag, those tumor cells are assumed to become necrotic

and phagocytosed by the host at a fixed rate.

Confirmation that the simulation tool is UMTGD-compliant: Scaling analysis of the

borders of simulated tumors. Confirmation that the simulation tool is UMTGD-compliant

is provided by analyzing the spatial and temporal invariances of the tumor border—exactly the

same as would be done to confirm the same in real tumors or in vitro tumor cell colonies. This

was performed following the methods of Bru et al. [7]. In the necessary calculations, the width

of the tumor border is defined as the sum of the fluctuations around the mean position of the

border. Now, by way of example, and understanding N be an integer, let us consider the points

on the tumor border xi, where i = 0 to N. The radii of the tumor at these points take the form

(xi, ri). Now, let (ri(t))i=1,� � �,N be a sequence of real numbers representing these radii, that

changes over time. The roughness of the border at a given time t, is thus the mean variation

around the mean value for the tumor radius. This roughness, denoted by w(l, t), can then be

expressed as:

wðl; tÞ ¼
1

M

XM

i¼1

ViðtÞ

 !1
2

;

ViðtÞ ¼
1
l
N

Xl

j¼1

rjþ i
Nl
ðtÞ � miðtÞ

� �2

;

miðtÞ ¼
1
l
N

Xl

j¼1

rjþ i
Nl
ðtÞ;

where mi is the mean value of the tumor radius in each time interval of length l, and Vi is the

variation of that interval. Now, given the fractal nature of tumor borders (see [6]), their rough-

ness varies both spatially and temporally following the power law:

wðl; tÞ �

( tb if t � ts;

laloc if t � ts;
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where αloc is the critical exponent of the local width, and β is the critical dynamic exponent of

growth. Although this description is valid for many systems, in some cases the local width w(l,

t) differs from the global width w(L, t) and a new critical exponent, αglob, must therefore be

defined, which has the properties:

wðl; tÞ � laloc ; wðL; tÞ � Laglob ; t � ts:

To determine αglob, the power spectrum S (i.e., the square of the modulus of the Fourier

transformation of the radii of the tumor border described by the function r(x, t), where

Sðq; tÞ ¼ ĵrðq; tÞj2 and q represents the momenta) must first be calculated. αglob can then be

determined from the equation below.

Sðq; tÞ �

(
q� ð2aglobþ1Þ; q� 1;

const; q� 1:

Once αglob, β and αloc are known, the dynamics of the simulated tumor can be determined

using the method described in [6].

Simulations

Different types of simulation were performed as described below. Table 1 shows the general

values assumed for different variables.

Free growth. This simulations was performed in the absence of all interactions with

PMNs in order to confirm that the tumor growth simulated obeyed the UMTGD [7].

Simulation of tumor-PMN interactions at different intensities of immune response.

To determine how different intensities of interaction between a tumor and PMNs would affect

tumor growth, the intensity of PMN arrival was varied. Tumors were simulated under free

Table 1. List of parameters used in the simulations.

Parameter Model Values

μmit 25 h

σmit 2.5 h

CF 1

Nact 38

Ract 50.0

μnec 200.0 h

μlife PMN 5 h

σlife PMN 0.5 h

arrival of PMNs 0–66 PMN/h

start_IR 200h

tphag 75 h

max_radius 1.0

growth_rate 10 radius / h

vapop 0.01 radius / h

The mitosis (μmit, σmit) are well established. The force (CF) and inhibition (Nact,Ract) parameters are fitted so that the

dinamical behaviour is congruent with experiments. In particular we check that the simulation reproduces the

scaling critical exponents in [7] and that the sizes of the active, inhibited and necrotic layer fit the experiments

(compare Fig 3 with [7]).

https://doi.org/10.1371/journal.pone.0202823.t001
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growth conditions for 214 h (i.e., to a tumor size of slightly under 200 cells) before simulated

immune responses were launched at PMN arrival rates of 7-66/h for 300 h.

Treatment simulation. In this simulation, a tumor of the size mentioned above was sub-

jected to a PMN arrival rate of 13 cells/h (a deficient immune response according to the results

of the above simulations) for 300 h. A simulated intent to treat was then performed, changing

the PMN arrival rate to 66 cells/h for the next 600 h.

The tool provided visualizations of the proliferative (green), quiescent (red) and necrotic

(black) cells in all simulations. Videos were also recorded for all simulations run.

Biological comparisons

Tumor cell colonies, which have the same growth dynamics as solid tumors [7], were prepared

in order to provide biological contrast for the simulated arrival of PMNs at the tumor border.

Preparation of tumor cell colonies. Ht-29 cells (a human colorectal adenocarcinoma

line) were obtained from the American Type Cell Culture Collection (Rockville, MD, USA)

and cultured as previously described [7]. They were then seeded (n = 5 × 104) onto a polysty-

rene disc (internal diameter 1 cm)—acting as a template for tumor cell colony growth—at the

centre of Petri dish. When the cells reached semi-confluence, the template was removed and

the tumor cell colony allowed to grow freely. Colonies were maintained at 37˚C in a 5% CO2

atmosphere, changing half of the culture medium every three days.

Isolation of PMNs. PMN suspensions were obtained as previously described [17] from

heparin-anticoagulated peripheral venous blood provided by volunteers. Cell viability, as mea-

sured by Trypan blue dye exclusion, always exceeded 95%. Total and differential cell counts

were made using a Sysmex XE-2100 cell counter (Roche Spain, Barcelona, Spain).

Attracting PMNs to tumor cell colonies. Ht–29 cell colonies produced as above were set

in growth medium in the wells of transwell devices. PMNs (n = 5 × 106) were placed on a 3 μm

micropore mesh placed above each tumor colony; this pore size allows PMNs attracted to the

tumor to pass through the mesh (simulating diapedesis) and approach the colony. All transwell

devices thus prepared were then incubated overnight at 37˚C in a 5% CO2 atmosphere. The

cell colonies were then photographed over the next 100-200 h using an inverted microscope

equipped with a contrast filter and a coupled digital camera. Photographs were scanned into a

personal computer at a final resolution of 1.3 μm/pixel, and the tumor borders hand traced to

record changes in size.

Results

Free growth

Fig 2 confirms the fractal nature of the tumor border and the information required to determine

αglob and αloc (as a consequence of power law behavior, these critical exponents are obtained

from the slopes of the presented graphs b and c). During the free growth simulation, the typical

fractal dimension of the tumor border was seen to obey the expression df = 1.14 ± 0.02 (see Fig

2a). The fractal nature of the tumor border allows scaling techniques to be used to determine

the growth dynamics of the tumoral mass. By analyzing the roughness of the border, a value of

αloc = 0.87 ± 0.05 for local roughness was obtained (see Fig 2b). From this it was determined

that df + αloc = 2.01, which coincides exactly with the value of self-afine interfaces in dimension

2 (the Euclidian dimension). αglob was determined from the slope, m, of the plot of the power

spectrum of the tumor border against the momenta (see Fig 2c). In this case, m = 2αglob + 1 =

4.08 ± 0.21, providing a global roughness exponent of αglob = 1.54 ± 0.10, which indicates

the tumor border to be super-rough, i.e., to show anomalous scaling. Thus, the free growth
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simulation meets the criteria of the MBE universality class of dynamics, showing the tool to be

UMTGD-compliant.

Fig 3 shows the tool’s representation of the spatial distribution of proliferative, quiescent

and necrotic cells in a free growth scenario. Note that at the centre of the simulated tumor,

where no space is available, the cells are in a necrotic state, as stipulated by the UMTGD [7].

Proliferating cells are only observed at the tumor border. Fig 4 confirms this to also be the case

for the tumor colony grown in vitro in the absence of PMNs.

Simulation of tumor-PMN interactions at different intensities of immune

response

Fig 5 describes the effect of the different PMN arrival rates (immune response intensity) on

tumor growth. As expected, the 7 PMN/h arrival rate allowed the tumor to continue to grow

unchecked: the number of living cells increased over the entire simulation time.

At 14 PMN/h, tumor growth was slower, but continued over the entire simulation period,

i.e., the number of neutrophils arriving at the simulated tumor was still insufficient to prevent

its growth. Fig 6 shows the distribution of proliferative, quiescent and necrotic cells to be simi-

lar to that seen for the 0 PMN/h scenario. S2 Video provides a visualization of this simulation.

Fig 6 shows graphically the distribution of proliferative, quiescent and necrotic cells in the sim-

ulated tumor.

At 15.5 PMN/h, the tumor grew very little (see Fig 4). Fig 6 shows dividing cells to be largely

absent from the tumor border, where the cells are now mostly quiescent.

At 28 PMN/h, the tumor did not grow. Nor did it grow at any higher rates of PMN arrival

(data not shown). Fig 6 shows that, under these conditions of simulated acute peritumoral

Fig 3. Image of the simulated tumor grown under free growth conditions, i.e., in the absence of any PMNs. This simulation

corresponds to S1 Video.

https://doi.org/10.1371/journal.pone.0202823.g003

Fig 2. Characterization of free tumor growth as simulated by the new tool. (a) The value for the fractal dimension of the tumor border is 1.14. (b) The roughness of the

tumor borders is quantitatively characterized by the value of the critical exponent of local roughness (αloc = 0.87 ± 0.05). (c) The global roughness critical exponent for the

tumor contour is provided by the latter’s power spectrum (value αglob = 1.54 ± 0.10).

https://doi.org/10.1371/journal.pone.0202823.g002
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inflammation, the proliferative tumor cells have completely disappeared: the majority of cells

appeared quiescent for some time, before they all became necrotic. S3 Video provides a visuali-

zation of this simulation.

Treatment simulation

Fig 6 shows how the tumor, which grew until over 500 h, began to regress at the arrival of the

PMNs at 66 cells/h. Maintaining this intensity of immune response led to the proliferating and

quiescent cells all entering a necrotic state, with the proportion of dead cells becoming larger

over time.

PMN recruitment by tumor cell colonies

Fig 7a and 7b show, at different magnifications, PMNs that have arrived at the tumor border

during growth in the transwell plates. By way of comparison, Fig 7c and 7d show the same

Fig 4. Image of an Ht-29 (human adenocarcinoma) tumor colony grown in the absence of PMNs. Note how the

centre of the tumor (a) contains only necrotic cells (dark). Proliferating cells (bright) are observed only at the border,

forming a thin rim. (a) Quiescent cells appear to be gray, forming a band between the necrotic core and the external

rim of proliferating cells. (b) Magnified view of the tumor border before the time point shown in (a). (c) 60 h later,

necrotic cells appear forming groups of cells. (d and e) 40 and 60 h later again, the necrotic core becomes denser and

larger, as expected according to [7].

https://doi.org/10.1371/journal.pone.0202823.g004

Fig 5. Change in size of simulated tumors when challenged by PMNs arriving at different rates. This image reveals

the existence of an immunological threshold that separates immunodeficient from immunocompetent behavior, and

thus tumor growth or regression. start-IR marks the point where PMN delivery began.

https://doi.org/10.1371/journal.pone.0202823.g005
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phenomenon captured in earlier in vivo work using an Ehrlich tumor implanted subcutane-

ously in a C57BL/6 mouse treated with 10 μg/kg/day G-CSF to stimulate the innate response

[18]. Fig 7e and 7f show the results obtained by the simulation tool during acute inflammation.

The higher magnification pictures for all three examples show that the first PMNs to arrive

occupy the free spaces at the tumor border, eventually forming a packaging layer that prevents

any diffusion of new tumor cells at the tumor border. As long as the tumor remains thus pack-

aged, no growth can occur. The proliferative cells become quiescent before eventually becom-

ing necrotic.

Discussion

Validation of the simulation tool

The results of the free growth simulation show that the universal dynamics of tumor growth

were obeyed, validating the proposed tool as an appropriate means of modeling tumor growth.

The simulations performed reveal the existence of an immunological

threshold

The simulations performed reveal the existence of a threshold arrival rate (immune response

intensity) of approximately 14 PMN/h marking a boundary between a protumoral and antitu-

moral response (see Fig 5). At intensities below this “immunological threshold”, the simulated

tumors continued to grow, while at intensities above it the distribution of proliferative, quies-

cent and necrotic cells shifted, indicating the tumor to have entered regression. In the treat-

ment simulation too, the arrival of 66 PMN/h—well over the immunological threshold—led to

Fig 6. Simulation tool snapshots of tumor growth under different immune response conditions. For all simulations, proliferating cells are shown in

green, quiescent cells in red, necrotic cells in black, and PMNs in white. (a) Tumor growth under a PMN arrival rate of 0 cells/h. Note how the tumor

continues to grow. This represents what happens under conditions of chronic, extremely low-level peritumoral inflammation, i.e., a severely

immunodeficient response. (b) Tumor growth under a PMN arrival rate of 14 cells/h. Note how the tumor continues to grow. This represents what

happens under conditions of chronic, low-level peritumoral inflammation, i.e., an immunodeficient response. (c) Tumor growth under a PMN arrival

rate of 28 cells/h. Note the change in the distribution of proliferative, quiescent and necrotic cells compared to that seen in the line above (14 PMN/h),

and how the tumor regresses. These results represent what happens under conditions of acute peritumoral inflammation, i.e., an immunocompetent

response. (d) Tumor growth under treatment conditions, i.e., a PMN arrival rate of 66 cells/h. Note how this induced acute peritumoral inflammation

causes the regression of the tumor. start_IR marks the start of PMN delivery.

https://doi.org/10.1371/journal.pone.0202823.g006
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the tumor becoming markedly necrotic and regressing. According to the dynamics that all

tumors obey [7], the peritumoral inflammation induced by a response above the immunologi-

cal threshold (acute inflammation) must cause the space at the tumor border—where new

tumor cells need to diffuse and settle—to disappear (see Figs 7 and 8). Indeed, the PMNs

around the tumor pack it tightly, filling this space, causing the tumor cells to become first qui-

escent and then enter a necrotic state, as confirmed in the present simulations and in earlier

reports [3, 7, 18]. When the peritumoral inflammation induced is below the immunological

threshold (chronic inflammation), the PMNs cannot make all the space at the tumor border

unavailable; no packaging of the tumor occurs (see Fig 8). Indeed, the low numbers of PMNs

that do arrive under such conditions could even increase the space available via their inherent

cytolytic activity on the tissue surrounding the tumor, and their favoring angiogenesis [11].

Chronic inflammation can therefore promote tumor growth and even favor the formation of

metastases [11, 12].

Can increasing the number of circulating PMNs induce a strong

antitumoral effect in vivo? Observations in animal models

The present simulations suggest that inducing strong and sustained peritumoral inflammation

via the use of, for example, G-CSF, could be used as a treatment to invert tumor growth.

Fig 7. Acute peritumoral inflammation. (a) PMNs arriving at an Ht-29 tumor cell colony in a transwell plate during

an immunocompetent response. (b) Higher magnification of above, showing PMNs occupying sites at the tumor cell

colony border. (c) PMNs arriving at the border of an Ehrlich tumor in C57BL/6 mouse treated with 10 μg/kg/day

G-CSF to stimulate the innate response. (d) High magnification of above, showing PMNs packaging the tumor. (e)

Simulation of tumor under acute inflammation conditions. PMNs appear as white dots; other colors represent

proliferative, quiescent and necrotic cells as above. (f) Higher magnification of above, showing PMNs packaging the

tumor border, preventing tumor cell division. For the simulation, proliferating cells are shown in green, quiescent cells

in red, necrotic cells in black, and PMNs in white. Note the similarities in the results for all three types of tumor.

https://doi.org/10.1371/journal.pone.0202823.g007
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G-CSF is a cytokine essential to the production and differentiation of PMNs; its antitumoral

effects have been recorded in a number of studies. Colombo et al. [19] reported an increased

number of PMNs around implanted adenocarcinomas in transgenic mice carrying the human

G-CSF gene. A similar effect was reported by Cavallo et al. [20] in the same mouse model in

which the animals carried the human gene for IL-2, which also increases PMN production.

Kokura et al. [21] showed PMNs to increase in number after the arterial administration

rhG-CSF in a whole body hypethermia rat model of AH109A carcinoma. Tamamori et al. [22]

reported an antitumoral effect of a monoclonal antibody against pancreatic cancer in BALB/c

nude mice, but this appeared much increased when these animals simultaneously received

human G-CSF. Similarly, van Spriel et al. [23] reported an antitumoral effect of a monoclonal

antibody against melanoma, but this also appeared increased when G-CSF was administered

and the number of circulating PMNs consequently increased. More recently, Siders et al. [24]

reported that the administration of G-CSF plus alemtuzumab achieved 100% survival in mice

with lymphoma, compared to 60% in those administered only the antibody. In fact, the admin-

istration of human recombinant G-CSF on its own has been reported to have a strong antitu-

moral effect. Matsumoto et al. [25] reported the inhibition of growth in liver and lung

metastases in murine models of melanoma, lung cancer and lymphoma after G-CSF adminis-

tration increased the number of circulating PMNs by just three fold.

Similar results were obtained [18] in a mouse model of fibroehrlich cell line by daily admin-

istration of granulocyte macrophage colony stimulating factor (GM-CSF) for eight weeks, in

which the total elimination of tumors was achieved in 20% of mice, as well as a general increase

in survival time. The death ratio was 15.76 times higher than in the treated group (p = 0.004)

and a high tumor necrosis (around 80% − 90%) of the rest of tumors was achieved.

The fact that the considerable increase of tumor necrosis occurs in the innermost part of

the tumor reinforces the argument that the lack of space for duplication increases the transi-

tion from a proliferative state of cells to a quiescent one and from a quiescent to a necrotic

state. If the main action was cytotoxic, necrosis would appear in the outermost area of the

tumor. This fact of cell death can also be seen in the in vitro culture of tumor cell colonies

(even those that grow in monolayer [7]) in which cell death occurs in the innermost regions of

the colonies, despite having all the cells in the colonies the same access to nutrients.

Fig 8. Difference between acute and chronic peritumoral inflammation. (a) Diagram reflecting acute peritumoral

inflammation, i.e., the result of a response above the immunological threshold. Note how the PMNs (blue cells)

package the tumor (green cells) tightly and occupy all the available space at the tumor border. There is no free space

into which any new tumor cell can diffuse and settle. The tumor cells thus become quiescent and eventually necrotic.

(b) Diagram reflecting chronic inflammation, i.e., the result of a response below the immunological threshold. The

PMNs do not tightly package the tumor and space remains into which newly produce tumor cells can diffuse and

settle. Indeed, the inherent cytolytic action of the PMNs could even increase the space available.

https://doi.org/10.1371/journal.pone.0202823.g008
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G-CSF and GM-CSF as antitumoral agents in the clinical setting

Following the establishment of the universal tumor growth theory, the complete regression of

a liver tumor was achieved in a patient who was compassionately administered G-CSF [26].

The administration of GM-CSF was also reported to have an antitumoral effect in phase II tri-

als involving patients with advanced melanoma [27], breast cancer and female genital tract car-

cinoma [28]. G-CSF was suspected of having a similar effect in a randomized, double-blind

clinical trial to determine whether it reduced the mucositis associated with several weeks of

post-operative radiotherapy for head and neck cancer [29]. Although it proved ineffective in

this regard, and the trial was ended early, it was later noticed that the 5-year survival rate of

those who had received G-CSF was 84% compared to 47% for those who did not. Certainly,

the former patients had a much higher number of PMNs when this was measured on day

50 (24.100 ± 2700/mm3 compared to 4.100 ± 1.500/mm3 in those who received no G-CSF). It

is interesting to note here that in a study involving patients with different tumors, in which

PMNs were assumed to be protumoral in their effects, and were therefore removed from the

blood, no clinical improvements were seen [30]. Further clinical trials should be performed to

confirm whether the induction of strong and sustained peritumoral inflammation causes

tumors to regress. Since tumor growth dynamics are universal, these trials could involve multi-

ple tumor types. The present simulations suggest, however, that any change between a

response above and below the immunological threshold—as might occur in patients with can-

cer due to stress etc. [31]—could lead to periods of tumor growth and regression, highlighting

the need not to suspend G-CSF treatment too early.The risk of possible side effects when main-

taining a level of peritumoral inflammation above the proposed immunological threshold

would appear acceptable in the treatment of cancer.

Treatment with G-CSF is associated with very few adverse events [29]. Intense circulating

neutrophilia would be safe, based on the clinical reports previously cited and some older

reports on constitutive neutrophilia [32, 33] and certainly the pharmaceutical companies that

market G-CSF report no problems to arise at 100 × 109 PMNs/L, observed in at least 2% of the

patients treated for neutropenia ([34]). Other reports in which G-CSF has been used to raise

PMNs levels 56,000 ± 16,000/mm3 suggest this not to be associated with adverse circulatory or

cardiovascular effects [35].

Acute inflammation and anti-tumoral effects

The classical works of William Coley, pioneer in cancer immunotherapy, and some recently

discovered (e.g. [36]) proved the anti-tumoral effects of the administration of pyrogenic bacte-

rial products without infectious capabilities.The antitumoral effect was linked to the regular

administration of a toxin (composed of extracts of Gram-positive bacteria Streptococcus pyo-

genes and dead Gram-negative Serratia marcescens) for prolonged periods, causing high fever

and shivers and, in all likelihood, intense neutrophilia [37].

Several independent observations of the link between acute infection (inevitably accompa-

nied by neutrophilia) and higher survival rates to cancer are also present in the literature. This

is the case of [38], who published a 5 years survival rate of 50% of lung cancer removal surgery

patients with post-operative empiema complications, compared to the 18% survival of the con-

trol group (with no empiema or infection).

Bladder cancer is another very interesting clinical context, in which local instillation of

Bacillus Calmette-Guérin (BCG) induces a strong immune response and has been the standard

of care for patients since 1977 (see [39, 40]). This is one of the most successful immunotherapy

for solid tumors over the last decades. A strong negative correlation has been observed

between leukocyturia levels (massively dominated by PMNs) and tumoral recurrence. Patients
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without tumoral recurrence show twice as much leukocytes in urine than those with tumor

progression [41, 42].

Conclusions

This work reports a simple informatic tool based on well founded biological principles that

reproduces key aspects of tumor growth, and explains how this growth changes under different

intensities of the innate immune response. The simulation results reveal the existence of an

immunological threshold that explains previous clinical reports in which peritumoral inflam-

mation sometimes appeared to be protumoral and sometimes antitumoral in its effects. Simu-

lated tumors challenged with an intense PMN arrival rate regressed in size, and real tumors

have been reported by different authors to behave similarly under such conditions. These find-

ings suggest that, based on the universal growth dynamics of solid tumors, maintaining strong

peritumoral inflammation with PMNs via treatment with compounds such as G-CSF, could

provide a universal treatment.
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S1 Video. Growth of a simulated tumor without presence of PMNs. Green, red and black

represent proliferative, inhibited and necrotic cells respectively.
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S2 Video. Growth of a simulated tumor under a PMN (white) arrival rate of 14 PMN/h.

Green, red and black represent proliferative, inhibited and necrotic cells respectively.
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S3 Video. Growth of a simulated tumor under a PMN (white) arrival rate of 28 PMN/h.

Green, red and black represent proliferative, inhibited and necrotic cells respectively. Note

how the distribution of cells shifts towards there being more quiescent and necrotic cells and

fewer proliferative cells.
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A threshold separating pro and anti-tumoral effects of the immune innate response

PLOS ONE | https://doi.org/10.1371/journal.pone.0202823 November 2, 2018 13 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202823.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202823.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202823.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202823.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202823.s005
https://doi.org/10.1371/journal.pone.0202823


Supervision: Antonio Brú, Juan Carlos Souto.
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